-
Generative Modeling by Estimating Gradients of the Data Distribution
This blog post focuses on a promising new direction for generative modeling. We can learn score functions (gradients of log probability density functions) on a large number of noise-perturbed data distributions, then generate samples with Langevin-type sampling. The resulting generative models, often called score-based generative models, has several important advantages over existing model families: GAN-level sample quality without adversarial training, flexible model architectures, exact log-likelihood computation, and inverse problem solving without re-training models. In this blog post, we will show you in more detail the intuition, basic concepts, and potential applications of score-based generative models.
-
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
An overview for our UAI 2019 paper on Sliced Score Matching. We show how to use random projections to scale up score matching—a classic method to learn unnormalized probabilisic models—to high-dimensional data. Theoretically, sliced score matching produces a consistent and asymptotic normal estimator under some regularity conditions. We apply sliced score matching to training deep energy-based models, learning VAEs with implicit encoders and training Wasserstein Auto-Encoders (WAEs).
-
Accelerating Natural Gradient with Higher-Order Invariance
An overview for our ICML 2018 paper, Accelerating Natural Gradient with Higher-Order Invariance. Natural gradient update loses its invariance due to the finite step size. In this paper, we study the invariance of natural gradient from the perspective of Riemannian geometry, and propose several new update rules to improve its invariance. Empirical results show that better invariance can result in faster convergence in several supervised learning, unsupervised learning and reinforcement learning applications.