
Probability flow ODE:

Prior distribution: 

Model 1: Reversing the probability flow ODE

Model 2: Reversing the SDE

Stochastic differential equation (SDE):

Perturbing data with a fixed SDE, and reverse it for 
generative modeling

The reverse-time SDE:

• Must be solved in the reverse time direction
• Requires estimating score functions at all time steps.

Estimating the score function for the reverse SDE:

• Time-dependent score-based model

• Goal:

• Training objective:

• Score matching (Hyvarinen 2005)
• Denoising score matching (Vincent 2010)
• Sliced score matching (Song et al., 2019)
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Maximum Likelihood Training of Score-Based Diffusion Models

• Score-based diffusion models 
synthesize images by reversing 
a stochastic process that 
diffuses data to noise, and are 
trained by minimizing a 
weighted combination of score 
matching losses.

• We show that by choosing a 
special weighting function, 
called the likelihood weighting, 
minimizing the weighted 
combination of score matching 
losses amounts to maximum 
likelihood training.

• Our theoretical results enable 
ScoreFlow, a continuous 
normalizing flow model trained 
with a variational objective, 
which is much more efficient 
than neural ODEs. We report 
the state-of-the-art likelihood on 
CIFAR-10 and ImageNet 32x32 
among all flow models, 
achieving comparable 
performance to cutting-edge 
autoregressive models.
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Empirical Results

Two Ways to Define Likelihoods

Reverse ODE

Reverse SDE

Maximum Likelihood Training

Can sample from the same distribution by solving the 
ODE instead of the SDE.

Theorem: KL divergence is upper-bounded by the 
weighted combination of score matching.

“Likelihood weighting”

≈ 0

Theorem: There exists an efficiently computable variational 
lower bound to                       , analogous to the evidence 
lower bound of variational inference or Variational Auto-
Encoders (VAEs).

Remarks: 
• Under ideal conditions:
• Importance sampling w.r.t. variable 𝑡 to reduce the variance 

when estimating expectations.
• Variational dequantization for comparing with models 

trained on discrete data.
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ScoreFlow

Negative log-likelihood (bits/dim) and sample quality (FID 
scores) on CIFAR-10 and ImageNet 32ˆ32.

NLLs on CIFAR-10 and ImageNet 32x32 without any data 
augmentation


