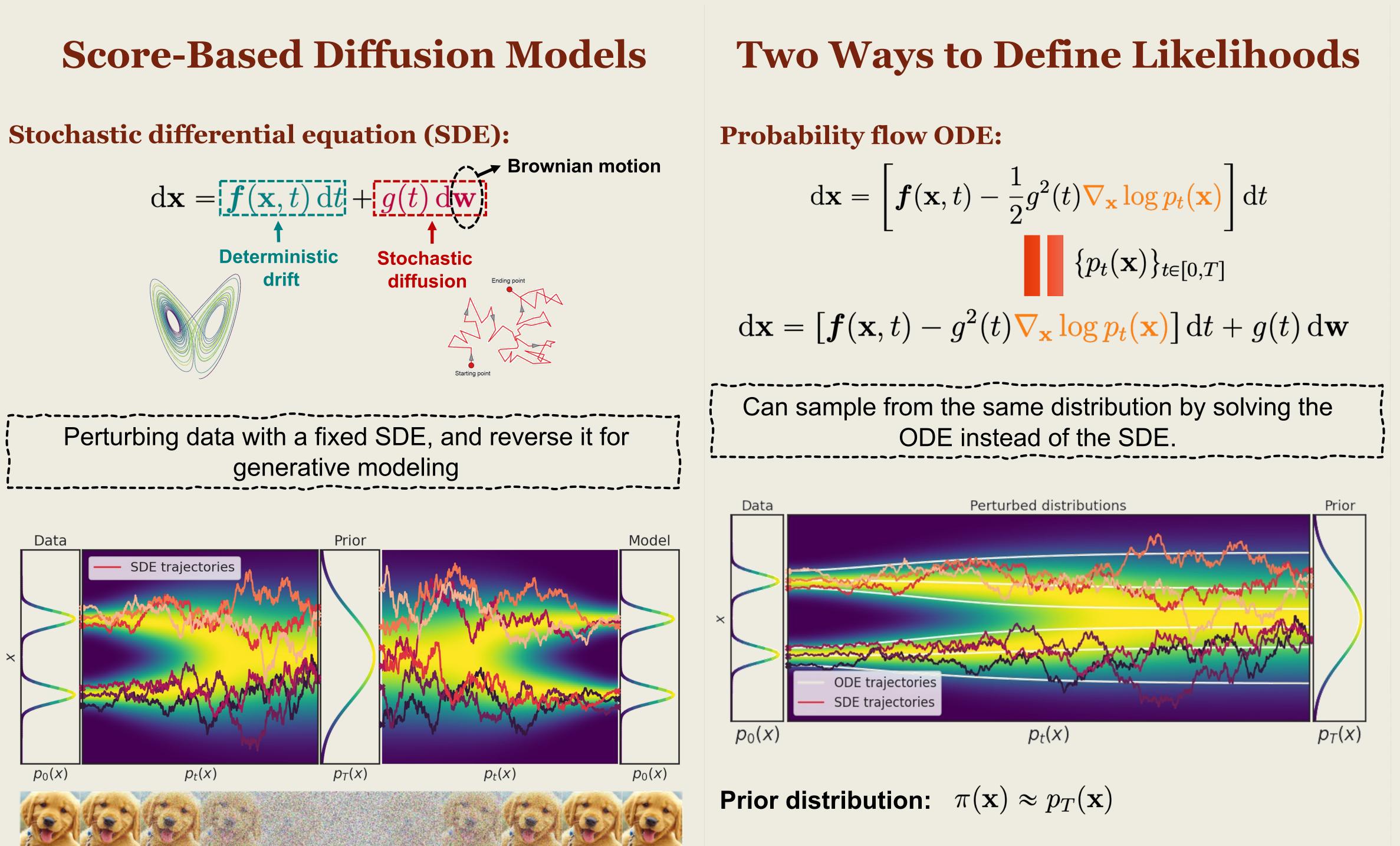
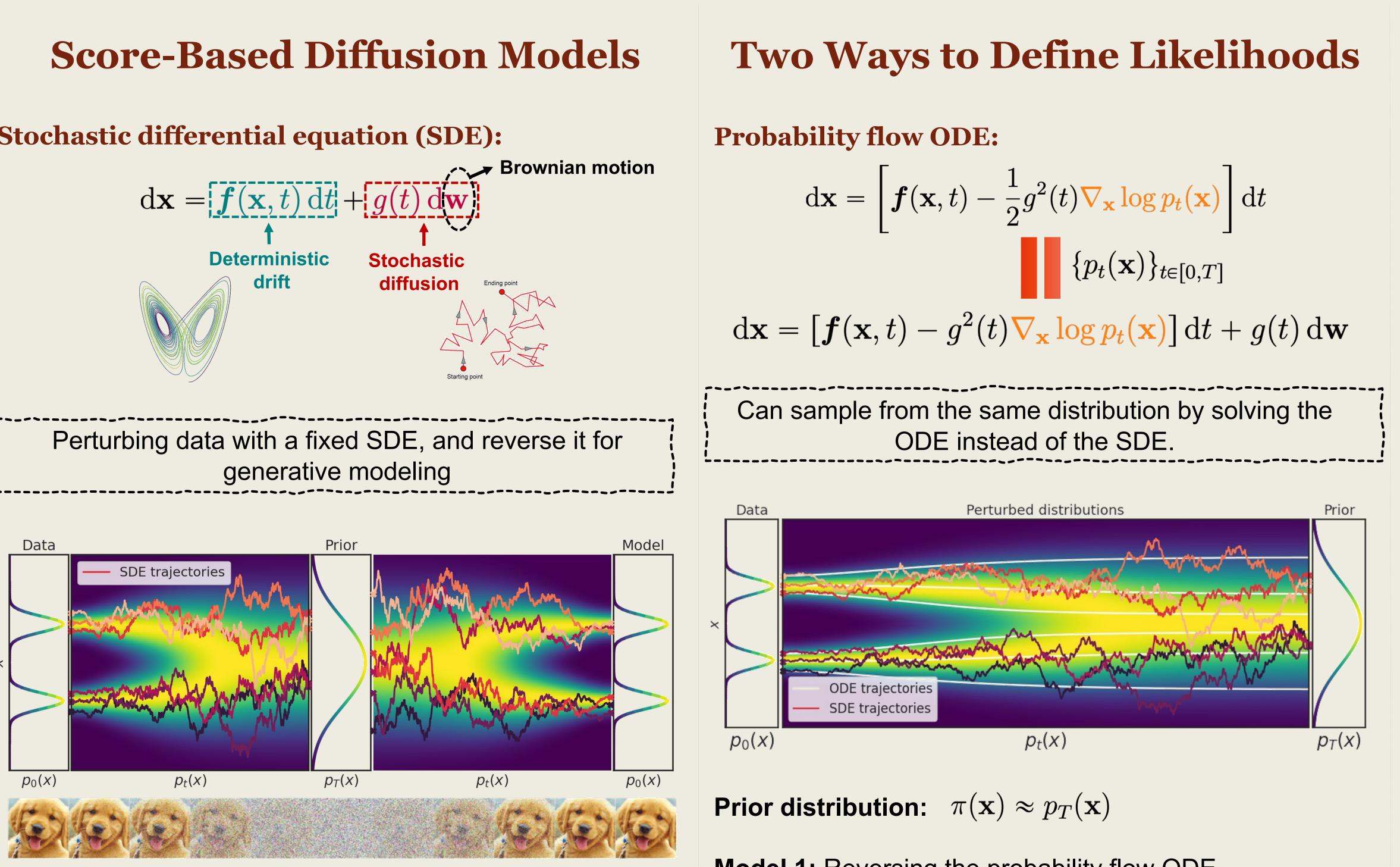


ABSTRACT

- Score-based diffusion models synthesize images by reversing a stochastic process that diffuses data to noise, and are trained by minimizing a weighted combination of score matching losses.
- We show that by choosing a special weighting function, called the likelihood weighting, minimizing the weighted combination of score matching losses amounts to maximum likelihood training.
- Our theoretical results enable ScoreFlow, a continuous normalizing flow model trained with a variational objective, which is much more efficient than neural ODEs. We report the state-of-the-art likelihood on CIFAR-10 and ImageNet 32x32 among all flow models, achieving comparable performance to cutting-edge autoregressive models.

Code:





The reverse-time SDE:

- Goal: \bullet

Maximum Likelihood Training of Score-Based Diffusion Models

Yang Song^{*}, Conor Durkan^{*}, Iain Murray, Stefano Ermon Stanford University and University of Edinburgh

 $d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\mathbf{w}$ Score function of $p_t(\mathbf{x})$

• Must be solved in the reverse time direction Requires estimating score functions at all time steps.

Estimating the score function for the reverse SDE:

Time-dependent score-based model

 $\boldsymbol{s}_{\boldsymbol{\theta}}(\cdot,t): \mathbb{R}^d \to \mathbb{R}^d$

 $\mathbf{s}_{\boldsymbol{\theta}} * (\mathbf{x}, t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

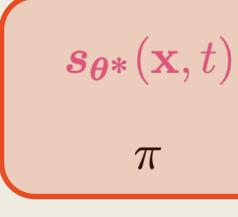
• Training objective:

 $\min_{\theta} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x} \sim p_t(\mathbf{x})} [\lambda(t) \| s_{\theta}(\mathbf{x},t) - \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \|_2^2]$ • Score matching (Hyvarinen 2005)

• Denoising score matching (Vincent 2010) / Sliced score matching (Song et al., 2019)'

 $d\tilde{\mathbf{x}} =$

Model 2: R $d\hat{\mathbf{x}} = [\boldsymbol{f}(\hat{\mathbf{x}})]$



Maximum Likelihood Training

Theorem: KL divergence is upper-bounded by the weighted combination of score matching.

"Likelihood weighting" $\mathrm{KL}(p_{\mathrm{data}} \parallel p_{\theta^*}^{\mathrm{SDE}})$ $)^{2} \mathbb{E}_{p_{t}(\mathbf{x})} [\|\nabla_{\mathbf{x}} \log p_{t}(\mathbf{x}) - s_{\boldsymbol{\theta}} * (\mathbf{x}, t)\|_{2}^{2}]]$ $\leq \frac{1}{2} \mathbb{E}_{t \sim \text{Uniform}[0,T]} [\sigma(t)]$ $+ \operatorname{KL}(p_T \parallel \pi) \approx 0$

ibution:
$$\pi(\mathbf{x}) \approx p_T(\mathbf{x})$$

Model 1: Reversing the probability flow ODE

$$\begin{bmatrix} \boldsymbol{f}(\tilde{\mathbf{x}},t) - \frac{1}{2}g(t)^2 \boldsymbol{s}_{\boldsymbol{\theta}*}(\tilde{\mathbf{x}},t) \end{bmatrix} dt, \quad \tilde{\mathbf{x}}(T) \sim \pi$$

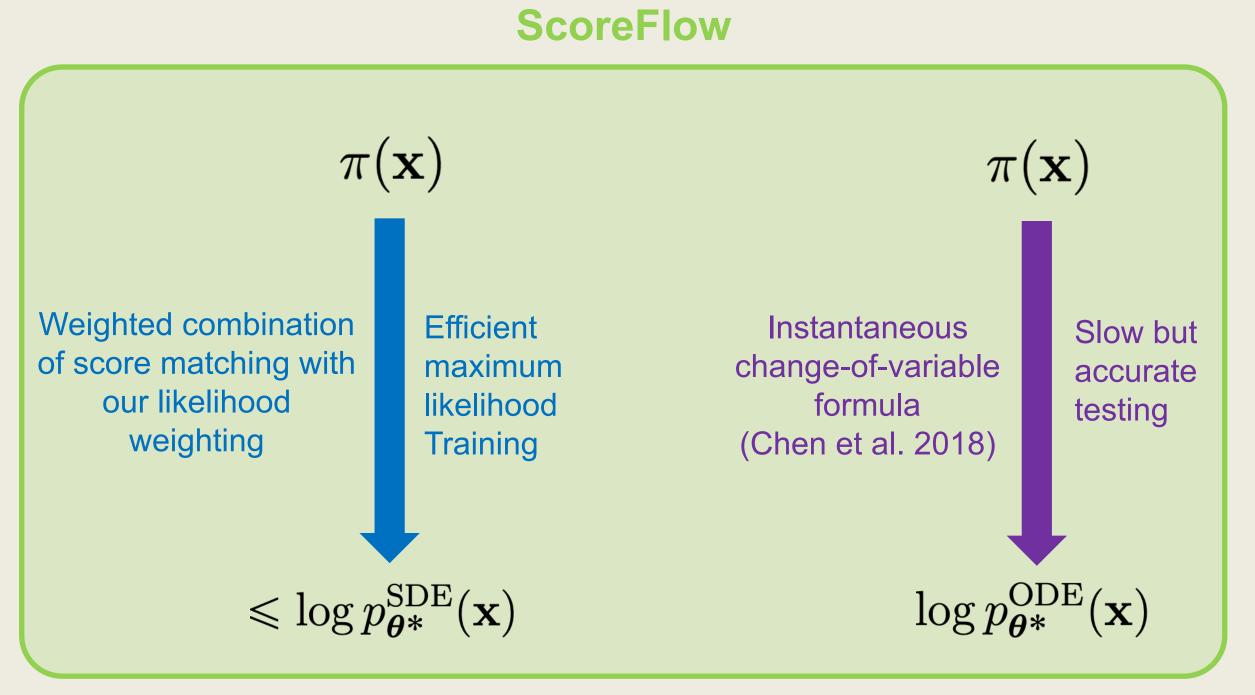
$$\tilde{\mathbf{x}}(0) \sim p_{\boldsymbol{\theta}*}^{\text{ODE}}$$
Reversing the SDE
$$\tilde{\mathbf{x}}(t) = g(t)^2 \boldsymbol{s}_{\boldsymbol{\theta}*}(\hat{\mathbf{x}},t) \end{bmatrix} dt + g(t) d\mathbf{w} = \hat{\mathbf{x}}(T)$$

$$(\hat{\mathbf{x}}, t) - g(t)^2 \boldsymbol{s}_{\boldsymbol{\theta}*}(\hat{\mathbf{x}}, t)] dt + g(t) d\mathbf{w}, \quad \hat{\mathbf{x}}(T) \sim \pi$$

 $\hat{\mathbf{x}}(0) \sim p_{\boldsymbol{\theta}*}^{\text{SDE}}$

Reverse ODE $p_{\theta^*}^{\text{ODE}}(\mathbf{x})$ Reverse SDE $p^{\mathrm{SDE}}_{{\boldsymbol{ heta}}*}(\mathbf{x})$

Encoders (VAEs).



Remarks:

	SDE	CIFAR-10					ImageNet 32×32				
Model		Uni. deq.		Var. deq.		FID↓	Uni. deq.		Var. deq.		
		NLL↓	Bound↓	NLL↓	Bound↓	FID↓	NLL↓	Bound↓	NLL↓	Bound↓	FID↓
Baseline	VP	3.16	3.28	3.04	3.14	3.98	3.90	3.96	3.84	3.91	8.34
Baseline + LW	VP	3.06	3.18	2.94	3.03	5.18	3.91	3.96	3.86	3.92	17.75
Baseline + LW + IS	VP	2.95	3.08	2.83	2.94	6.03	3.86	3.92	3.80	3.88	11.15
Deep	VP	3.13	3.25	3.01	3.10	3.09	3.89	3.95	3.84	3.90	8.40
Deep + LW	VP	3.06	3.17	2.93	3.02	7.88	3.91	3.96	3.86	3.92	17.73
Deep + LW + IS	VP	2.93	3.06	2.80	2.92	5.34	3.85	3.92	3.79	3.88	11.20
Baseline	subVP	2.99	3.09	2.88	2.98	3.20	3.87	3.92	3.82	3.88	8.71
Baseline + LW	subVP	2.97	3.07	2.86	2.96	7.33	3.87	3.92	3.82	3.88	12.99
Baseline + LW + IS	subVP	2.94	3.05	2.84	2.94	5.58	3.84	3.91	3.79	3.87	10.57
Deep	subVP	2.96	3.06	2.85	2.95	2.86	3.86	3.91	3.81	3.87	8.87
Deep + LW	subVP	2.95	3.05	2.85	2.94	6.57	3.88	3.93	3.83	3.88	16.55
Deep + LW + IS	subVP	2.90	3.02	2.81	2.90	5.40	3.82	3.90	3.76	3.86	10.18

Theorem: There exists an efficiently computable variational lower bound to $\log p_{\theta*}^{\rm SDE}({f x})$, analogous to the evidence lower bound of variational inference or Variational Auto-

• Under ideal conditions: $\log p_{\theta^*}^{\text{SDE}}(\mathbf{x}) \approx \log p_{\theta^*}^{\text{ODE}}(\mathbf{x})$ • Importance sampling w.r.t. variable *t* to reduce the variance when estimating expectations.

 Variational dequantization for comparing with models trained on discrete data.

Empirical Results

Negative log-likelihood (bits/dim) and sample quality (FID scores) on CIFAR-10 and ImageNet 32³².

NLLs on CIFAR-10 and ImageNet 32x32 without any data augmentation

Model	CIFAR-10	ImageNet
FFJORD [15]	3.40	-
Flow++ [18]	3.08	3.86
Gated PixelCNN [35]	3.03	3.83
VFlow [4]	2.98	3.83
PixelCNN++ [40]	2.92	-
NVAE [54]	2.91	3.92
Image Transformer [36]	2.90	3.77
Very Deep VAE [8]	2.87	3.80
PixelSNAIL [7]	2.85	3.80
δ-VAE [38]	2.83	3.77
Sparse Transformer [9]	2.80	-
ScoreFlow (Ours)	2.83	3.76

© Poster Template by Genigraphics® 1.800.790.4001 www.genigraphics.c