

Stanford University

Microsoft

ABSTRACT

- We consider the threat model of unrestricted adversarial examples — adversarial examples that are beyond small perturbations.
- We propose to effectively construct unrestricted adversarial examples with conditional generative models.
- We show that the defenses against perturbation-based adversarial examples, including provable defenses, are susceptible to unrestricted adversarial examples. Our attacks uniformly achieved over 84% success rates across all the datasets in our experiments and showed moderate degree of transferability.

State-of-the-art classifiers can be fooled by adding quasi-imperceptible noise.

+noise

Notations: Let \mathcal{I} be the set of all input under consideration. Suppose $o: \mathcal{O} \subseteq \mathcal{I} \rightarrow \{1, 2, \dots, K\}$ is an oracle that takes an image in its domain \mathcal{O} and outputs one of K labels. We call \mathcal{O} the set of legitimate images. We consider a classifier $f: \mathcal{I} \rightarrow \mathcal{I}$ $\{1, 2, \dots, K\}$ that predicts the label for any image in \mathcal{I} .

Definition 1 (Perturbation-Based Adversarial Examples) Given a subset of (test) images $\mathcal{T} \subset \mathcal{O}$, small constant $\epsilon > 0$, and matrix norm ||·||, a perturbation-based adversarial example is defined to be any image in $\mathcal{A}_p \stackrel{\text{\tiny def}}{=} \{x \in \mathcal{O} | \exists x' \in \mathcal{O}\}$ $\mathcal{T}, \|x - x'\| \le \epsilon \land f(x') = o(x') = o(x) \neq f(x) \}.$

Definition 2 (Unrestricted Adversarial Examples) An unrestricted adversarial example is any image that is an elment of $\mathcal{A}_u \stackrel{\text{\tiny def}}{=} \{ x \in \mathcal{O} \mid o(x) \neq f(x) \}.$

Observations

Figure 2: Unrestricted Adversarial Examples in the wild.

Figure 3: Perturbation-based adversarial examples (top row) versus unrestricted adversarial examples (bottom) row) generated by our Generative Adversarial Attack.

Constructing Unrestricted Adversarial Examples with Generative Models

ADVERSARIAL EXAMPLES

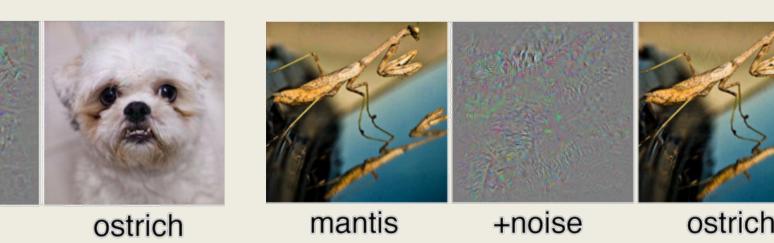


Figure 1: *Perturbation-based adversarial examples.*

UNRESTRICTED ADVERSARIAL EXAMPLES

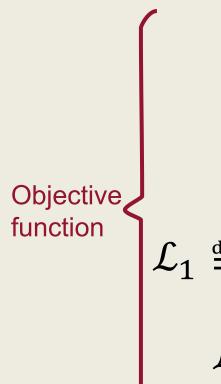
 Perturbation-based adversarial examples are special cases of unrestricted adversarial examples. $\mathcal{A}_p \subset \mathcal{A}_u$. • Unrestricted adversarial examples capture a more general notion of threats to machine learning models.

00011122333334445556666775 100111222333444555666747888999

Model: We consider decoder-based conditional generative models. Images can be generated by $x = g_{\theta}(y, z)$, where $z \sim p(Z)$.

• $\min_{\phi,\psi}$

Basic attack: Let f(x) be the targeted classifier. We produce targeted attack, where the adversarial example x satisfies $o(x) = y_{\text{source}}$ and $f(x) = y_{\text{target}}$.



- $\lambda_1 \to \infty, \lambda_2 = 0$

Yang Song¹, Rui Shu¹, Nate Kushman², Stefano Ermon¹ ¹Stanford University, ²Microsoft Research

CONDITIONAL **GENERATIVE MODELS**

AC-GAN based on Wasserstein distance: • $\min_{\theta} - \mathbb{E}_{z \sim P_z, y \sim P_y} \left[d_{\phi} (g_{\theta}(z, y)) - \log c_{\psi}(y \mid g_{\theta}(z, y)) \right]$ (generator loss) $\mathbb{E}_{z \sim P_z, y \sim P_v} \left[d_{\phi}(g_{\theta}(z, y)) \right] - \mathbb{E}_{x \sim P_x} \left[d_{\phi}(x) \right]$ $-\mathbb{E}_{x \sim P_{x}, y \sim P_{y|x}} \left[\log c_{\psi}(y \mid x) \right] +$ $\lambda \mathbb{E}_{\tilde{x} \sim P_{\tilde{x}}} \left[\left(\left\| \nabla_{\tilde{x}} d_{\phi}(\tilde{x}) \right\|_{2} - 1 \right)^{2} \right]$ (critic loss) • Notations: $d_{\phi}(\cdot)$: critic P_{v} : uniform distribution over labels

 $c_{\psi}(\cdot)$: auxiliary classifier

PRACTICAL UNRESTRICTED **ADVERSARIAL ATTACKS**

 $\min \mathcal{L}$

 $\mathcal{L} \stackrel{\text{\tiny def}}{=} \mathcal{L}_0 + \lambda_1 \mathcal{L}_1 + \lambda_2 \mathcal{L}_2$ $\mathcal{L}_0 \stackrel{\text{\tiny def}}{=} -\log f(y_{\text{target}} \mid g_\theta(z, y_{\text{source}}))$ $\mathcal{L}_1 \stackrel{\text{\tiny def}}{=} \frac{1}{m} \sum \max\{|z_i - z_i^0| - \epsilon, 0\}, \quad z_i^0 \sim \mathcal{N}(0, 1)$ $\mathcal{L}_2 \stackrel{\text{\tiny def}}{=} -\log c_{\phi} (y_{\text{source}} \mid g_{\theta}(z, y_{\text{source}}))$

Noise-augmented attack: Use a different conditional generator to combine perturbation-based attacks. $g_{\theta}(z,\tau,y;\epsilon_{\text{attack}}) \stackrel{\text{\tiny def}}{=} g_{\theta}(z,y) + \epsilon_{\text{attack}} \tanh(\tau),$ where both z and τ are optimized.

Perturbation-based attacks as a special case: Using a specially designed conditional generator we can show that our unrestricted adversarial attacks incorporate perturbation-based attacks. The modifications are • Let \mathcal{T} be the test dataset, and $\mathcal{T}_{y} = \{x \in \mathcal{T} \mid o(x) = y\}.$ • Discrete latent code $z \in \{1, 2, \dots, |\mathcal{T}_{y_{source}}|\}$ • $g_{\theta}(z, y)$ is the z-th image in \mathcal{T}_{v} • z^0 is uniformly drawn from $\{1, 2, \dots, |\mathcal{T}_{y_{source}}|\}$

Untargeted attacks against certified defenses:

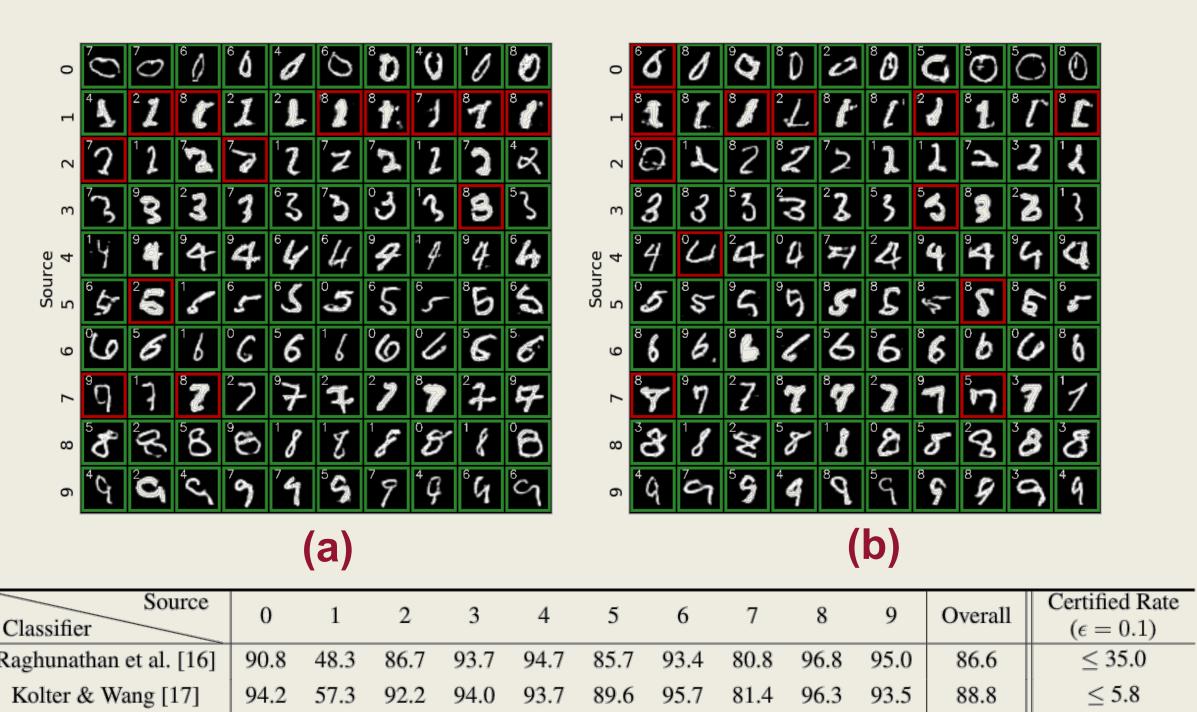


Figure 4: Untargeted unrestricted adversarial attacks against (a) Raghunathan et al. and (b) Kolter & Wang

Targeted attacks against adversarial training:



Attack Type Our attack (w/ Our attack (w/ noise

EXPERIMENTS

Evaluation: Use Amazon Mechanical Turk (MTurk) to label generated unrestricted adversarial examples. Apporximate the ground truths with majority vote of 5 labelers.

3	Target 4 5	6	7	8	9		0	1	2	3	Tar 4	get 5	6	7	8	9	
0	4 D	6 ⁸	7 2		9	0		79	87	81	79	88	85	81	70	87	
8	3.3	T	01	HR.		г	61		75	70	65	57	70	83	57	60	
120	12 1)	2	21	8	21	7	90	91		88	92	92	84	93	82	88	
5	5	an l	3	31	31	m	89	91	93		88	90	97	86	85	88	
	14	hi	4	146	9	ce 4	83	87	83	73		82	72	80	68	88	
in the	51	59	59	35	2	Source 5 4	90	97	98	94	92		92	98	96	94	
N/A	1 6		N/A	6	6	Q	76	73	70	77	82	85		65	75	66	
27		7		-79	2	7	87	92	83	88	83	90	90		84	80	
8	18 8)	8	3		S	00	91	83	94	86	91	89	89	89		94	
3	19 19	9	7	29		თ	90	91	96	93	87	92	86	91	89		
	(a)										(b)					
Source Class: Female																	
Figure 5 : Targeted																	
unrestricted adversarial																	
attacks against																	
	adversarial training. (a)																
	samples on SVHN (b)																
Success rates on SVHN																	
(c) (c) samples on CelebA.																	
								(-)			1						
C	lassifier	1		•	t [10]	Mad	•	let [1	0]		esNe	-		esNet	t	[16]	
tack		_	(1	$\frac{100 \text{ ad}}{100 \text{ 5}}$	/		$\frac{(ad)}{0.8}$			<u>`</u>	$\frac{0}{00} \frac{1}{3}$	()	`	$\frac{\mathrm{adv}}{\mathrm{o}}$		05.8	

Classifier	Madry Net [10]	Madry Net [10]	ResNet	ResNet	[16]	[17]	
	(no adv)	(adv)	(no adv)	(adv)			
ick	99.5	98.4	99.3	99.4	95.8	98.2	
/o noise)	95.1	0	92.7	93.7	77.1	84.3	
e, $\epsilon_{\text{attack}} = 0.3$)	78.3	0	73.8	84.9	78.1	63.0	

Figure 6: Transferability on MNIST classifiers.