

1. INTRODUCTION

Observations:

- Kernel methods can be used to embed a distribution to a Hilbert space and probability rules can be replaced by corresponding linear operators
- The kernel embedding of a conditional distribution has an optimizational formulation
- The posterior distribution in Bayes' rule has an optimizational formulation

Does the kernel embedding of a posterior distribution have an optimizational formulation?

Contributions:

- A theoretically justified affirmative answer to the question
- A simpler but faster regularization technique called thresholding regularization
- Posterior regularization for kernel Bayesian inference called kRegBayes, analogous to RegBayes

2. PRELIMINARIES

Kernel embedding:

$$p_X \mapsto \mathbb{E}_{p_X}[\phi(X)] =: \mu_X \in \mathcal{H}_{\mathcal{X}},$$

where $\phi(X) := k(X, \cdot)$. (i) When p_X is a conditional distribution, μ_X is called *conditional embedding*. (ii) When p_X is a posterior distribution in a Bayesian setting, μ_X is called *posterior embedding*. **Optimizationl formulation of conditional embedding**

$$\mu_{Y|X} = \underset{\mu}{\operatorname{arg\,inf}} \mathcal{E}_{s}[\mu] = \underset{\mu}{\operatorname{arg\,inf}} \mathbb{E}_{(X,Y)}[\|\psi(Y) - \mu(X)\|_{\mu}]$$

Given i.i.d. samples $\{(x_1, y_1), \dots, (x_n, y_n)\}$ from p(X, Y), the esti*mator* is

$$\widehat{\mathcal{E}}_s[\mu] = \frac{1}{n} \|\psi(y_i) - \mu(x_i)\|_{\mathcal{H}_{\mathcal{Y}}}^2$$

Optimizational formulation of posterior distribution

$$p(Y \mid X = x) = \arg \min_{q(Y)} \left\{ \operatorname{KL}(q(Y) \mid | \pi(Y)) - \int \log p(X = s.t. \quad q(Y) \in \mathcal{P}_{\operatorname{prob}} \right\}$$

Posterior regularization for Bayesian inferece (RegBayes)

$$\min_{q(Y),\xi} \begin{cases} \operatorname{KL}(q(Y)||\pi(Y)) - \int \log p(X = x \mid Y) dq(Y) \\ s.t. \quad q(Y) \in \mathcal{P}_{\operatorname{prob}}(\xi) \end{cases}$$

Kernel Bayesian Inference with Posterior Regularization

Yang Song¹ ¹Dept. of Physics, Tsinghua University

Jun Zhu²

Yong Ren² ²Dept. of CS and Tech., Tsinghua University

 $X)\|_{\mathcal{H}_{\mathcal{Y}}}^{2}]$

 $= x \mid Y) dq(Y)$

$$+U(\xi)$$

3. POSTERIOR EMBEDDING AS A REGRESSOR

Let $\pi(Y)$ be the prior, $p(X \mid Y)$ be the likelihood, $p^{\pi}(X, Y)$ be the joint distribution and suppose we have samples to directly estimate $\pi(Y)$ and $p(X \mid Y)$. The posterior embedding $\mu_{Y|X}^{\pi}$ is the same as conditional embedding

 $\mu_{Y|X}^{\pi} = \operatorname{arg\,inf} \mathcal{E}_{s}[\mu] = \operatorname{arg\,inf} \mathbb{E}_{(X,Y)}[\|\psi(Y) - \mu(X)\|_{\mathcal{H}_{\mathcal{Y}}}^{2}]$

How to get a reasonable estimator of \mathcal{E}_s when we do not have i.i.d. samples from $p^{\pi}(X, Y)$?

Assuming $f(x, y) = \|\psi(y) - \mu(x)\|_{\mathcal{H}_{\mathcal{V}}}^2 \in \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$, we have

$$\mathcal{E}_s[\mu] = \mathbb{E}_{(X,Y)}[\|\psi(Y) - \mu(X)\|_{\mathcal{H}_{\mathcal{Y}}}^2] =$$

We show in the paper that $\mu_{(X,Y)}$ can be estimated by $\sum_{i=1}^{n} \beta_i \psi(Y_i) \otimes \phi(X_i).$

Theorem 1 (Proof in Appendix). *Under some conditions (details in pa*per), we have the following consistent estimator of $\mathcal{E}_s[\mu]$:

$$\widehat{\mathcal{E}}_s[\mu] = \sum_{i=1}^n \beta_i \, \|\psi(y_i) - \mu\|$$

where $\boldsymbol{\beta} = (\beta_1, \cdots, \beta_n)^{\mathsf{T}}$ is given by $\boldsymbol{\beta} = (G_Y + n\lambda I)^{-1} \tilde{G}_Y \tilde{\boldsymbol{\alpha}}$, where $(G_Y)_{ij} = k_{\mathcal{Y}}(y_i, y_j)$, $(\tilde{G}_Y)_{ij} = k_{\mathcal{Y}}(y_i, \tilde{y}_j)$, and $\tilde{\boldsymbol{\alpha}} = (\tilde{\alpha}_1, \cdots, \tilde{\alpha}_l)^{\mathsf{T}}$.

What if some β_i 's are negative and $\widehat{\mathcal{E}}_s[\mu]$ has no minima?

Under some conditions, $\widehat{\mathcal{E}}_s^+[\mu] = \sum_{i=1}^n \beta_i^+ \|\psi(y_i) - \mu(x_i)\|_{\mathcal{H}_{\mathcal{Y}}}^2$ where $\beta_i^+ = \max(0, \beta_i)$ is also consistent. This is called *threshold*ing regularization.

Finally, we can establish the consistency of $\widehat{\mu}_{\lambda,n} = \arg \inf_{\mu} \widehat{\mathcal{E}}_{\lambda,n}[\mu]$, where

$$\widehat{\mathcal{E}}_{\lambda,n}[\mu] = \sum_{i=1}^{n} \beta_i^+ \|\psi(y_i) - \mu(x_i)\|$$

4. KREGBAYES

$$\mathcal{L} := \underbrace{\sum_{i=1}^{m} \beta_i^+ \|\mu(x_i) - \psi(y_i)\|_{\mathcal{H}_{\mathcal{Y}}}^2 + \lambda \|\mu\|_{\mathcal{H}_K}^2}_{\widehat{\mathcal{E}}_{\lambda,n}[\mu]}$$

where $\{(x_i, y_i)\}_{i=1}^m$ is the sample used for representing likelihood, $\{(x_i, t_i)\}_{i=m+1}^n$ is the sample used for nonparametric posterior reg*ularization*. $\psi(t_i)$ is the kernel embedding of $\delta(Y = t_i)$ and encourages $p(Y \mid X = x_i)$ to be close to $\delta(Y = t_i)$.

 $= \langle f, \mu_{(X,Y)} \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}$

 $\| \iota(x_i) \|_{\mathcal{H}_{\mathcal{V}}}^2,$

 $\|\|_{\mathcal{H}_{\mathcal{H}}}^{2}+\lambda\|\|\mu\|_{\mathcal{H}_{K}}^{2}$.

 $+\delta \sum \|\mu(x_i) - \psi(t_i)\|_{\mathcal{H}_{\mathcal{V}}}^2,$ i = m + 1

The regularization term

5. EXPERIMENTS

We apply the framework to state-space filtering tasks, since Bayesian inference is a key element of filtering. **Toy dynamics**

 $\theta_{t+1} = \theta_t + 0.4 + \xi_t \pmod{\theta_t}$

kRegBayes.

Camera position recovery

- bounded radii.
- The dynamics is

- testing we use $R_1 = 5$ and $R_2 = 7$.
- larization for kRegBayes.

• We compare results of EKF, UKF, KBR (kernel Bayes' rule), pKBR (KBR with thresholding regularization) and kRegBayes • The data points $\{(\theta_t, x_t, y_t)\}$ are generated from the dynamics

$$2\pi), \quad \begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = (1 + \sin(8\theta_{t+1})) \begin{pmatrix} \cos\theta_{t+1} \\ \sin\theta_{t+1} \end{pmatrix} + \zeta_t$$

• Use samples from the true dynamics as regularization for

Results for toy dynamics

• We compare results of KF, KBR, pKBR and kRegBayes • The camera has a fixed height and is in a circular region with

 $\theta_{t+1} = \theta_t + 0.2 + \xi_{\theta}, \quad r_{t+1} = \max(R_2, \min(R_1, r_t + \xi_r)), \quad x_{t+1} = \cos\theta_{t+1}, \quad y_{t+1} = \sin\theta_{t+1}$

• During training we choose $R_1 = 0$ and $R_2 = 10$ while during

• We generate positions with radii 6 and use them as the regu-