

ABSTRACT

- Consistency models can produce high quality samples in one step. They are currently best trained by distillation from pre-trained diffusion models.
- We present several techniques to improve consistency training, a method that learns consistency models directly from data without relying on distillation, making them independent generative models.
- Our techniques include new weighting functions, noise schedules, time embeddings, removing EMA from the teacher network, and replacing LPIPS with pseudo-Huber losses.
- We achieve FID=2.51 on CIFAR-10 and FID=3.25 on ImageNet 64x64 with one step sampling, which improves prior consistency training by a factor of 3.5x and 4x respectively, surpassing diffusion distillation methods.

Definition:

Training:

Improved Techniques for Training Consistency Models

Yang Song & Prafulla Dhariwal OpenAI

$$\lambda(t_n) = \frac{1}{t_{n+1} - t_n}$$

Improved time schedules number of training iterations.

400 100

QH 40

METHOD

Fast sampler Diff-Instruct

PD* (Saliman

PD (LPIPS)

CD (LPIPS)

Direct Gener

RIN (Jabri et DDPM (Ho e iDDPM (Nic ADM (Dhariv EDM (Karra EDM* (Heur **BigGAN-dee** CT (LPIPS)

iCT (ours)

iCT-deep (ou

Doubling the total number of time steps for every fixed

Sampling each individual time step according to a discretized lognormal distribution.

Putting it together

 Outperforms best-in-class diffusion distillation techniques Competitive with diffusion models and GANs • Balanced precision and diversity; no mode collapse.

Results on ImageNet 64x64

1	NFE (\downarrow) FID (\downarrow) Prec. (\uparrow) Rec. (\uparrow)			
rs & distillation for diffusion models				
(Luo et al., 2023)	1	5.57		
ns & Ho, 2022)	1	15.39	0.59	0.62
	2	8.95	0.63	0.65
	4	6.77	0.66	0.65
(Song et al., 2023)	1	7.88	0.66	0.63
	2	5.74	0.67	0.65
	4	4.92	0.68	0.65
(Song et al., 2023)	1	6.20	0.68	0.63
	2	4.70	0.69	0.64
	3	4.32	0.70	0.64
ration				
t al., 2023)	1000	1.23		
et al., 2020)	250	11.0	0.67	0.58
chol & Dhariwal, 2021)	250	2.92	0.74	0.62
wal & Nichol, 2021)	250	2.07	0.74	0.63
s et al., 2022)	511	1.36		
n) (Karras et al., 2022)	79	2.44	0.71	0.67
ep (Brock et al., 2019)	1	4.06	0.79	0.48
(Song et al., 2023)	1	13.0	0.71	0.47
	2	11.1	0.69	0.56
	1	4.02	0.70	0.63
	2	3.20	0.73	0.63
urs)	1	3.25	0.72	0.63
	2	2.77	0.74	0.62