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ABSTRACT

* Consistency models can

produce high quality samples in
one step. They are currently
best trained by distillation from
pre-trained diffusion models.

We present several techniques
to Improve consistency training,
a method that learns
consistency models directly
from data without relying on
distillation, making them

independent generative models.

Our technigues include new
weighting functions, noise
schedules, time embeddings,
removing EMA from the teacher
network, and replacing LPIPS

with pseudo-Huber losses.

We achieve FID=2.51 on
CIFAR-10 and FID=3.25 on
ImageNet 64x64 with one step
sampling, which improves prior
consistency training by a factor
of 3.5x and 4x respectively,
surpassing diffusion distillation
methods.
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Weighting functions, time embeddings & dropout
» Larger weighting for smaller noise.

Intuition: score-based diffusion models define a one-to-
one mapping between noise and data through the
probability flow ODE. Consistency models learn to

estimate this mapping directly. A(ty,) = 1
tn—l—l — tn
Data, Noise
L \ * Reducing the sensitivity of time embeddings
* Continuous-time CT converges only when the
sensitivity of time embeddings is sufficiently small.
C Jo(Xir;t) (x7,T) * Need larger dropout than diffusion models
Removing EMA in teacher network:
( fo(xr,T) / * Use zero EMA in the teacher network during consistency
training for better theoretical soundness.
Definition: 0" = stopgrad(0)
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Sampling: one-step or multi-step. 2
Training: 10
* Consistency Distillation (CD)
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Minimizing pseudo-Huber loss:
* Pseudo-Huber loss outperforms both squared loss and

LPIPS in consistency training.
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 Consistency Training (CT)
» More accurate when |t,,1 1 — t,| = 0 100
* Use a schedule to progressively reduce time gaps.

Pseudo-Huber (c = 0.03)

A (tn) I Fo (X + tn12,tns1) = fo- (X + tuz, t)]]]

% Pseudo-Huber (c=0.1)
» Continuous-Time Consistency Training -
- 0fo- (X 1 Ofe- (x 1 Xy — X\ |
) )‘(t)fe(xt,t)T f9 ( t ) | f@ ( t ) . t 10
_ 8t 8xt t |

0 10 20 30 40
Training steps (x10%)

Improved time schedules

* Doubling the total number of time steps for every fixed

number of training iterations.
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« Sampling each individual time step according to a

discretized lognormal distribution.

Putting it together

* Qutperforms best-in-class diffusion distillation techniques

« Competitive with diffusion models and GANSs
« Balanced precision and diversity; no mode collapse.

Results on ImageNet 64x64
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