

ABSTRACT

- We perturb data to noise with a fixed stochastic differential equation (SDE), and learn to reverse it for sample generation. The reverse SDE can be obtained by estimating the time-dependent gradient field (aka. score function) of the perturbed data distribution.
- We achieve outstanding sample quality: state-of-the-art FID and Inception scores on CIFAR-10, high fidelity generation of 1024x1024 images.
- The SDE framework allows exact likelihood computation. We obtain the state-of-the-art likelihood on uniformly dequantized CIFAR-10 images, without maximum likelihood training.
- We can perform controllable generation without re-training models, and demonstrate applications in class-conditional generation, image inpainting and colorization.

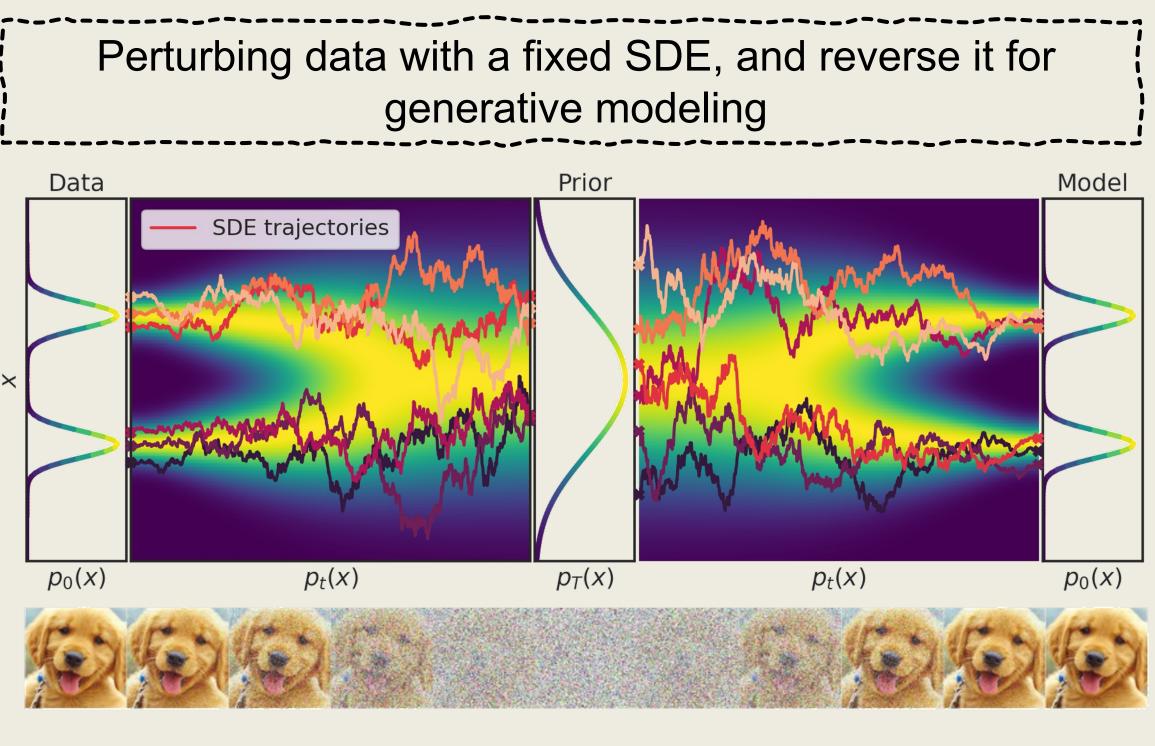
Code:



Score-Based Generative Modeling through Stochastic Differential Equations Yang Song², Jascha Sohl-Dickstein¹, Diederik P. Kingma¹, Abhishek Kumar¹, Stefano Ermon², and Ben Poole¹

¹Google Brain, ²Stanford University

Generative Modeling with SDEs Stochastic differential equation (SDE): Brownian motion $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{g}(t) d\mathbf{w}$ **Deterministic Stochastic** drift diffusio Perturbing data with a fixed SDE, and reverse it for generative modeling



The reverse-time SDE:

 $d\mathbf{x} = [f]$

Learning to reverse the SDE:

- Goal:

 $\min_{\boldsymbol{\theta}} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x} \sim p_t(\mathbf{x})} [\lambda(t) \| \boldsymbol{s}_{\boldsymbol{\theta}}(\mathbf{x},t) - \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \|_2^2]$

$$\mathbf{f}(\mathbf{x},t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \left[dt + g(t) d\mathbf{w} \right]$$
Score function of $p_t(\mathbf{x})$

• Must be solved in the reverse time direction Requires estimating score functions at all time steps.

Time-dependent score-based model $\boldsymbol{s}_{\boldsymbol{\theta}}(\cdot,t):\mathbb{R}^d \to \mathbb{R}^d$

$$\mathbf{s}_{\boldsymbol{\theta}} * (\mathbf{x}, t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$$

• Training objective:

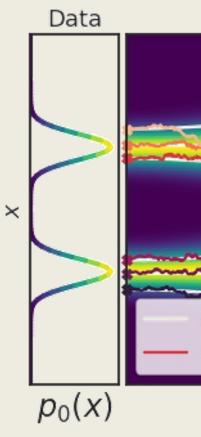
Score matching (Hyvarinen 2005)

 Denoising score matching (Vincent 2010) • Sliced score matching (Song et al., 2019)

Estimated reverse-time SDE Numerical SDE solvers: Example: Euler-Maruyama method Initialize Repeat until t = 0

Experimental results:

CIFAR-10 sample quality			
Model	FID↓	IS↑	
Conditional			
BigGAN (Brock et al., 2018) StyleGAN2-ADA (Karras et al., 2020a)	14.73 2.42	9.22 10.14	
Unconditional			
StyleGAN2-ADA (Karras et al., 2020a) NCSN (Song & Ermon, 2019) NCSNv2 (Song & Ermon, 2020) DDPM (Ho et al., 2020)	2.92 25.32 10.87 3.17		
DDPM++	2.78 2.55	9.64	
DDPM++ cont. (VP) DDPM++ cont. (sub-VP)	2.61	9.58 9.56	
DDPM++ cont. (deep, VP) DDPM++ cont. (deep, sub-VP)	2.41 2.41	9.68 9.57	
NCSN++ NCSN++ cont. (VE)	2.45 2.38	9.73 9.83	
NCSN++ cont. (deep, VE)	2.20	9.89	



$\mathbf{dx} = [\mathbf{f}(\mathbf{x}, t) - g^2(t)\mathbf{s}_{\theta^*}(\mathbf{x}, t)]\mathbf{dt} + g(t)\mathbf{dw}$

Solving Reverse SDEs for Sampling

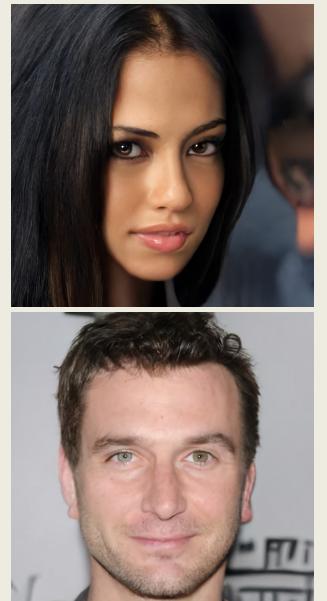
$t = T, \mathbf{x} \sim p_T(\mathbf{x})$	
$\mathbf{x} \leftarrow [\mathbf{f}(\mathbf{x},t) - g^2(t)\mathbf{s}_{\theta^*}(\mathbf{x},t)]$	$\Delta t + g(t)\mathbf{z}$
$\mathbf{x} \leftarrow \mathbf{x} + \Delta \mathbf{x}$	$\mathbf{z} \sim \mathcal{N}(0, \Delta t \mathbf{I})$
$t \leftarrow t + \Delta t$	

Example: Reverse diffusion method (see paper)

Predictor-Corrector methods:

• Improves numerical SDE solvers with MCMC, at the cost of more computation and more hyperparameters.

CelebA-HQ 1024px samples

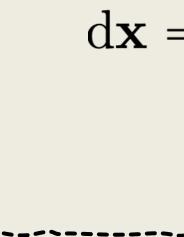


Probability Flow ODEs Turning the SDE into an ODE with the same $p_t(\mathbf{x})$ Perturbed distributions

ODE trajectories SDE trajectories

 $p_T(x)$

• **Probability flow ODE:** $d\mathbf{x} = \left[\boldsymbol{f}(\mathbf{x}, t) - \frac{1}{2} g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \right] dt$ Score function of $p_t(\mathbf{x}) \approx s_{\theta^*}(\mathbf{x}, t)$ nple from the same distribution by solving the ODE instead of the SDE. NLL Test \downarrow FID \downarrow Model

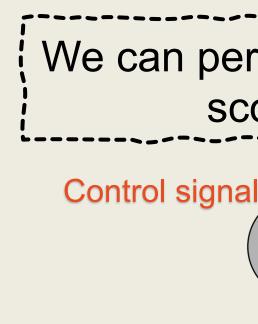


Can	sai	n
	~~~~	• — (

# **Exact likelihood computation:**

RealNVP (Dinh et al., 2016)	3.49	-
iResNet (Behrmann et al., 2019)	3.45	-
Glow (Kingma & Dhariwal, 2018)	3.35	-
MintNet (Song et al., 2019b)	3.32	-
Residual Flow (Chen et al., 2019)	3.28	46.37
FFJORD (Grathwohl et al., 2018)	3.40	-
Flow++ (Ho et al., 2019)	3.29	-
DDPM ( <i>L</i> ) (Ho et al., 2020)	$\leq 3.70^{*}$	13.51
DDPM ( $L_{simple}$ ) (Ho et al., 2020)	$\leq 3.75^*$	3.17
DDPM	3.28	3.37
DDPM cont. (VP)	3.21	3.69
DDPM cont. (sub-VP)	3.05	3.56
DDPM++ cont. (VP)	3.16	3.93
DDPM++ cont. (sub-VP)	3.02	3.16
DDPM++ cont. (deep, VP)	3.13	3.08
DDPM++ cont. (deep. sub-VP)		





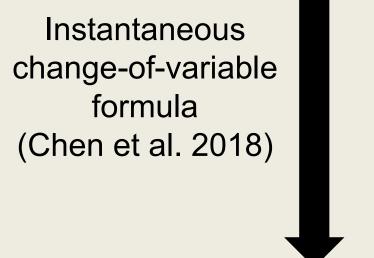
 $\nabla_{\mathbf{x}} \log p_{\mathbf{x}}$ 

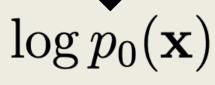
## Image inpa



 $p_t(x)$ 

$\log p_T(\mathbf{z})$			
aneous			





## **Controllable Generation**

rform conditional generation with an unconditional core-based model. No need of re-training.
$\mathbf{y} \rightarrow \mathbf{x}_0 \rightarrow \mathbf{x}_t \rightarrow \mathbf{x}_T$
Reverse for controllable generation
$\mathbf{y}_{t}(\mathbf{x} \mid \mathbf{y}) = \begin{bmatrix} \nabla_{\mathbf{x}} \log p_{t}(\mathbf{x}) \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \nabla_{\mathbf{x}} \log p_{t}(\mathbf{y} \mid \mathbf{x}) \end{bmatrix}$ unconditional score, specified with domain knowledge
inting and colorization results: