Stanford University Université m de Montréal

ABSTRACT

- We show that generative models can be used for detecting adversarially perturbed images and observe that most adversarial examples lie in low probability regions.
- We introduce a novel family of methods for defending against adversarial attacks based on the idea of purification.
- We show that a defensive technique from this family, PixelDefend, can achieve stateof-the-art results on a large number of attacking techniques, improving the accuracy against the strongest adversary on the CIFAR-10 dataset from 32% to 70%.

State-of-the-art classifiers can be fooled by adding quasi-imperceptible noise.

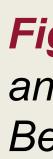
clea

frog

Figure 1: Various attacks of an image from CIFAR-10. The text above shows the attacking methods while the text below shows the predicted labels (of a ResNet).

PixelCNN a convolutional neural network that factorizes p(X) using the product rule

where the pixel dependencies are in raster scan order.



PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples

Yang Song¹, Taesup Kim², Sebastian Nowozin³, Stefano Ermon¹, Nate Kushman³ ¹Stanford University, ²Université de Montréal, ³Microsoft Research

ADVERSARIAL EXAMPLES

NEURAL DENSITY MODELS

$$p(X) = \prod_{i=1}^{n} p(x_i | x_{1:(i-1)}),$$

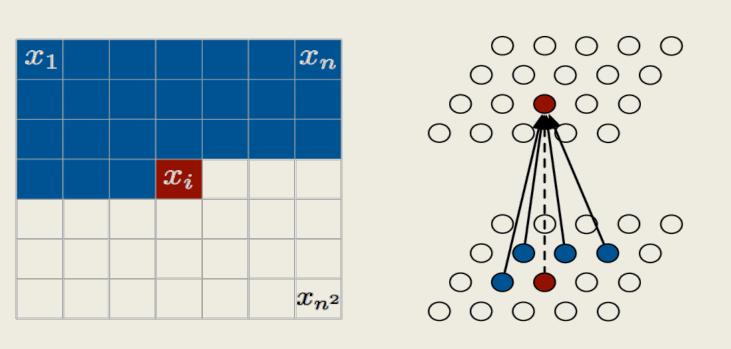


Figure 2: PixelCNN.

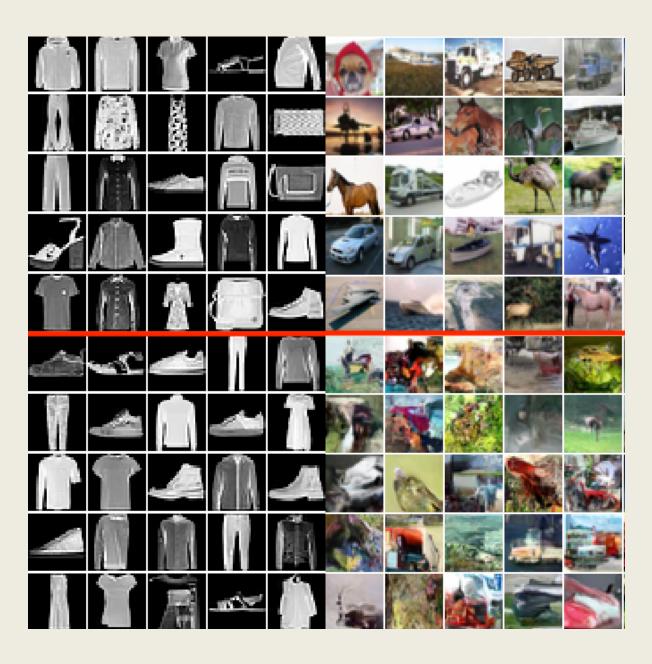
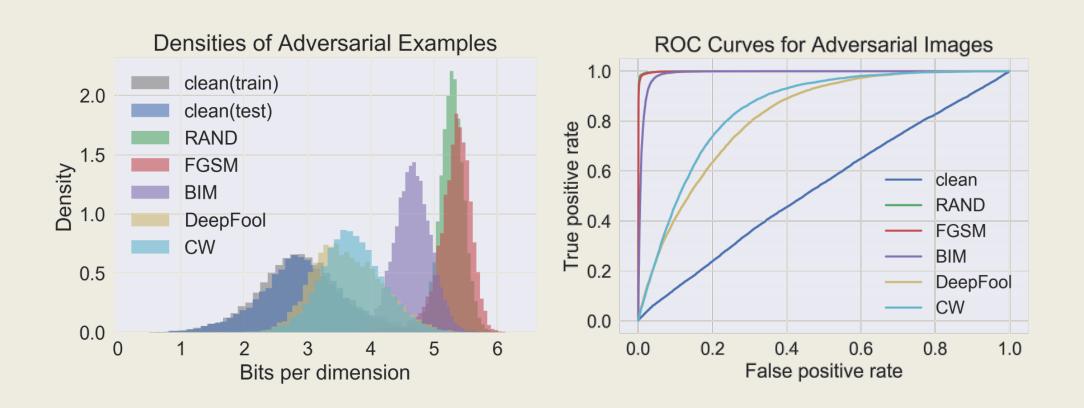
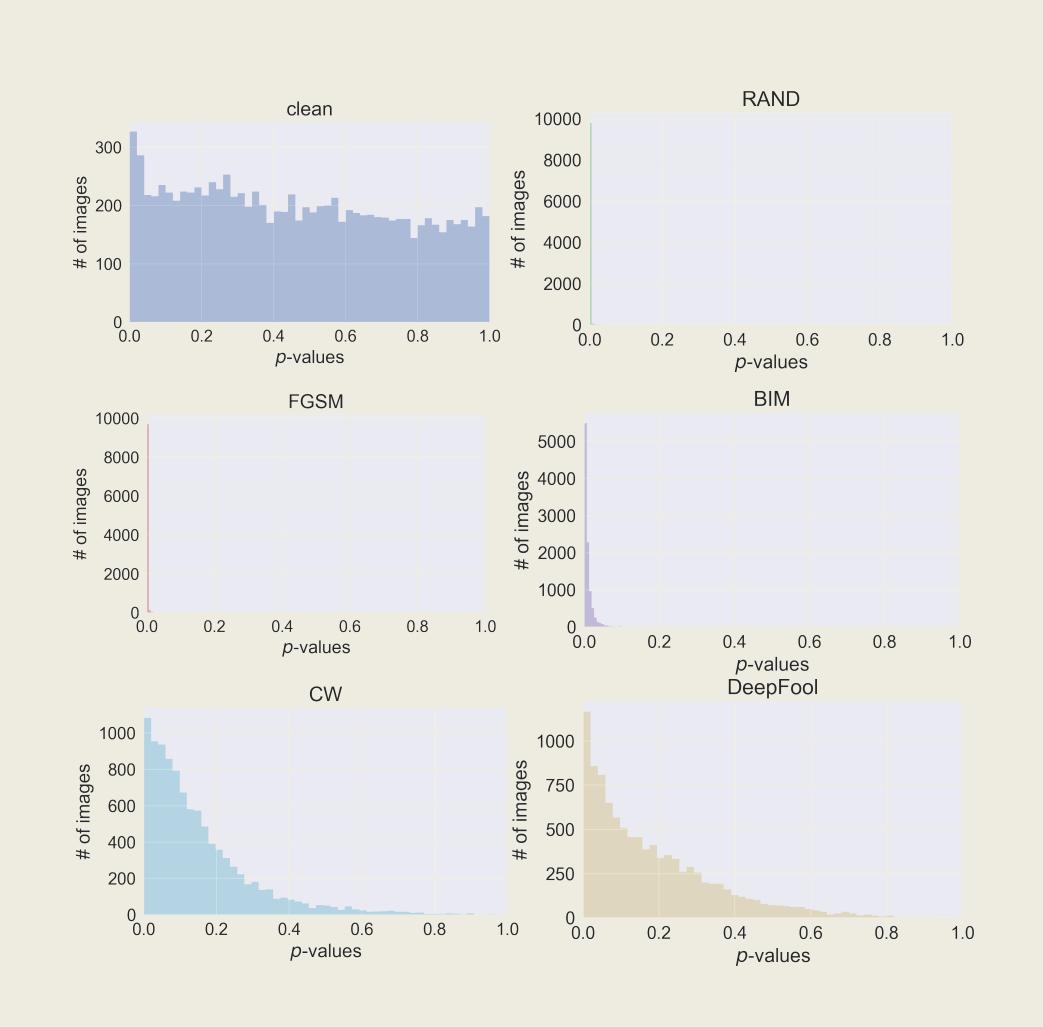


Figure 3: Sampled images for Fashion-MNIST and CIFAR-10. Above red line are real images. Below read line are PixelCNN samples.

Observation: The PixelCNN density of an adversarial example is usually significantly lower than that of an clean example. Therefore, p(X) can be used as a test statistic to detect adversarial examples.



attacks.



DETECTING **ADVERSARIAL EXAMPLES**

Statistical test: Given an input $X' \sim q(X)$ and training images $X_1, X_2, \dots, X_N \sim p_t(X)$. The null hypothesis is $H_0: p_t(X) = q(X)$ while the alternative is $H_1: p_t(X) \neq q(X)$. The p-value is computed as

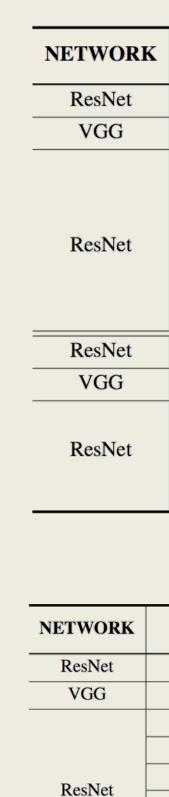
value =
$$\frac{1}{N+1} \left(\sum_{i=1}^{N} \mathbb{I}\left[p(X_i) \le p(X') \right] + 1 \right)$$

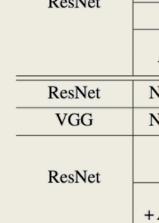
Figure 4: (Left) Likelihoods of different adversarial examples. (Right) ROC curves for detecting various

Figure 5: Distributions of p-values for different attacks.

Intuition: The harm of adversarial examples might be reduced if they can be modified to have higher likelihood.

Algorithm 1 Pix										
Input: Image X										
Output: Purifie										
1: $\mathbf{X}^* \leftarrow \mathbf{X}$										
2: for each row										
3: for each										
4: for e										
5: <i>x</i>										
6: S										
7: C										
8: U										
9: end :										
10: end for										
11: end for										





PIXELDEFEND

xelDefend **X**, Defense parameter ϵ_{defend} , Pre-trained PixelCNN model p_{CNN} ed Image \mathbf{X}^* column j do ach channel k do $c \leftarrow \mathbf{X}[i, j, k]$ Set feasible range $R \leftarrow [\max(x - \epsilon_{defend}, 0), \min(x + \epsilon_{defend}, 255)]$ Compute the 256-way softmax $p_{\text{CNN}}(\mathbf{X}^*)$. Update $\mathbf{X}^*[i, j, k] \leftarrow \arg \max_{z \in R} p_{\text{CNN}}[i, j, k, z]$

EXPERIMENTS

Table 1: Fashion MNIST ($\epsilon_{\text{attack}} = 8/25, \epsilon_{\text{defend}} = 32$)

	TRAINING TECHNIQUE	CLEAN	RAND	FGSM	BIM	DEEP FOOL	CW	STRONGEST ATTACK
	Normal	93/93	89/71	38/24	00/00	06/06	20/01	00/00
	Normal	92/92	91/87	73/58	36/08	49/14	43/23	36/08
	Adversarial FGSM	93/93	92 /89	85/85	51/00	63/07	67/21	51/00
	Adversarial BIM	92/91	92/91	84/79	76/63	82/72	81/70	76/63
	Label Smoothing	93/93	91/76	73/45	16/00	29/06	33/14	16/00
	Feature Squeezing	84/84	84/70	70/28	56/25	83/83	83/83	56/25
	Adversarial FGSM + Feature Squeezing	88/88	87/82	80/77	70/46	86/82	84/85	70/46
	Normal + <i>PixelDefend</i>	88/88	88/89	85/74	83/76	87/87	87/87	83/74
	Normal + <i>PixelDefend</i>	89/89	89/89	87/82	85/83	88/88	88/88	85/82
	Adversarial FGSM + <i>PixelDefend</i>	90/89	91/90	88 /82	85 /76	90 /88	89/88	85 /76
	Adversarial FGSM + <i>Adaptive PixelDefend</i>	91/91	91/ 91	88/88	85/84	89/ 90	89 /84	85/84

Table 2: **CIFAR-10** ($\epsilon_{\text{attack}} = 2/8/16, \epsilon_{\text{defend}} = 16$)

TRAINING TECHNIQUE	CLEAN	RAND	FGSM	BIM	DEEP FOOL	CW	STRONGEST ATTACK
Normal	92/92/92	92/87/76	33/15/11	10/00/00	12/06/06	07/00/00	07/00/00
Normal	89/89/89	89/88/80	60/46/30	44/02/00	57/25/11	37/00/00	37/00/00
Adversarial FGSM	91/91/91	90/ 88 /84	88/91/91	24/07/00	45/00/00	20/00/07	20/00/00
Adversarial BIM	87/87/87	87/87/86	80/52/34	74/32/06	79/48/25	76/42/08	74/32/06
Label Smoothing	92/92/92	91/88/77	73/54/28	59/08/01	56/20/10	30/02/02	30/02/01
Feature Squeezing	84/84/84	83/82/76	31/20/18	13/00/00	75/75/75	78/78/78	13/00/00
Adversarial FGSM + Feature Squeezing	86/86/86	85/84/81	73/67/55	55/02/00	85/85/85	83/83/83	55/02/00
Normal + <i>PixelDefend</i>	85/85/88	82/83/84	73/46/24	71/46/25	80/80/80	78/78/78	71/46/24
Normal + <i>PixelDefend</i>	82/82/82	82/82/84	80/62/52	80/61/48	81/76/76	81/79/79	80/61/48
Adversarial FGSM + <i>PixelDefend</i>	88/88/86	86/86/87	81/68/67	81/69/56	85/85/85	84/84/84	81/69/56
Adversarial FGSM + Adaptive PixelDefend	90/90/90	86/87/ 87	81/70/67	81/70/56	82/81/82	81/80/81	81/70/56

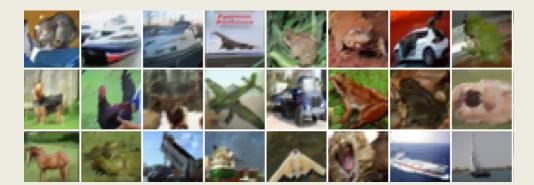


Figure 6: Adversarial images (left) and purified images after PixelDefend (right).