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Proof for Theorem 1
Proof. Denote Z =

∑r
k=1 dkαkβ

ᵀ
k and conduct singular

value decomposition to give

Z =
r∑

k=1

σkukv
ᵀ
k =

r∑
k=1

dkαkβ
ᵀ
k (1)

where σ1:r are singular values of Z and U =
{u1,u2, · · · ,um} and V = {v1,v2, · · · ,vn} are corre-
sponding orthogonal matrices. Note that we denote r =
min(m,n) throughout this paper. If the true rank is smaller
than min(m,n), then singular values with indices larger
than the rank are assumed to be zero. We will try to prove

r∑
k=1

σk ≤
r∑

k=1

dk, (2)

which actually implies all the assertions in the theorem.
For ∀i ∈ [r], left multiply equation (1) with uᵀ

i and right
multiply with vi to obtain

σi =

r∑
k=1

dku
ᵀ
i αkβ

ᵀ
kvi. (3)

Since U and V are orthogonal matrices with full ranks in a
singular value decomposition, we can regard column vectors
of U and V to be eigenbases of space Rm and Rn. Hence it
is natural to obtain

αi =

m∑
j=1

xijuj , βi =

n∑
j=1

yijvj , (4)

where ∀i ∈ [r],
∑m

j=1 x
2
ij ≤ 1 and

∑n
j=1 y

2
ij ≤ 1.

We then rewrite Eq. (3) to give

σi =

r∑
k=1

dkxkiyki. (5)
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As a result,
r∑

i=1

σi =

r∑
i=1

r∑
k=1

dkxkiyki =

r∑
k=1

dk

r∑
i=1

xkiyki

≤
r∑

k=1

dk

(
r∑

i=1

x2ki

)1/2( r∑
i=1

y2ki

)1/2

≤
r∑

k=1

dk

(
m∑
i=1

x2ki

)1/2( n∑
i=1

y2ki

)1/2

≤
r∑

k=1

dk, (6)

which means for any valid tuples of (d1:r,α1:r,β1:r), re-
placing

∑r
k=1 dkαkβ

ᵀ
k with

∑r
k=1 σkukv

ᵀ
k in P2, accord-

ing to (2), will not make the solution worse. This indicates
that there is at least one optimal solution of P2 having the
form of singular value decompositions like those in P1′.

As a result, we always have s ≤ t, because for any optimal
solution of P2, we can get an SVD form compatible to the
constraints of P1′ with an objective value not larger. How-
ever, considering the fact that P2 is basically the same prob-
lem as P1′ with looser constraints, we conclude that t ≤ s.
Following the reasoning above we get s ≤ t and s ≥ t,
which exactly means s = t.

Suppose we have got the optimal solutions of P2, which
is denoted as (d∗1:r,α

∗
1:r,β

∗
1:r). We assert that Z∗ =∑r

k=1 d
∗
kα
∗
kβ
∗ᵀ
k is the optimal solution of P1, because plug-

ging Z∗ into P1 will yield a value not greater than t. Since
s = t and s is the minimum possible value of P1, we con-
clude that pluggingZ∗ into P1 gets the value s, which means
Z∗ is the optimal solution for P1.

Similarly, suppose that the optimal solution of P1 is Z†,
we compute its singular value decomposition to get Z† =∑r

k=1 σ
†
ku
†
kv
†
k

ᵀ
. Then plugging (σ†1:r,u

†
1:r,v

†
1:r) into P2

will give the value s. Since s = t, we conclude that Z† is
an optimal solution for P2.

Note that it is practically very difficult for
∑r

k=1 σk =∑r
k=1 dk to hold as this requires

∑r
i=1 x

2
ki =

∑r
i=1 y

2
ki = 1

and xki = yki, for all k, i ∈ [r]. This means that conducting
singular value decomposition to any Z =

∑r
k=1 dkαkβ

ᵀ
k

and substituting singular values and vectors into P2 can typ-
ically get a better result, which indicates that α1:r and β1:r



Table 1: Results on different missing rates

Setting m = 500, n = 500, r = 30, q = 5

Missing-Rates 90% 80% 50% 0%

BPMF 1.6842± 0.1374 0.3210± 0.0168 0.1304± 0.0022 0.0933± 0.0000
GASR 0.1992± 0.0241 0.1321± 0.0086 0.0841± 0.0028 0.0724± 0.0036

Setting m = 1000, n = 1000, r = 50, q = 10

Missing-Rates 90% 80% 50% 0%

BPMF 0.9422± 0.0478 0.2396± 0.0033 0.1105± 0.0013 0.0859± 0.0007
GASR 0.2513± 0.0045 0.1688± 0.0041 0.1270± 0.0034 0.1115± 0.0057

will nearly always get orthonormalized automatically under
the unit sphere constraints.

Remark 1. The optimal solutions for P2 are not necessarily
unique. As a result, the optimal α1:r and β1:r for P2 are not
always orthonormalized, though orthonormal vectors pro-
vide a solution. However, what matters is not the orthonor-
mality of α1:r and β1:r, but the equivalence of optimal solu-
tion Z =

∑r
k=1 dkαkβ

ᵀ
k . Theorem 1 asserts that P1 and P2

produce the same set of optimal matrix completion results.
As a result, the MAP problem constructed according to P2 is
anticipated to function similarly as the one constructed from
P1.

Note that the condition for strict equality in
∑r

k=1 σ
∗
k ≤∑r

k=1 d
∗
k is practically very hard to satisfy.

Remark 2. This special relationship between P1 and P2 in
Theorem 1 can be generalized to other forms of noise po-
tentials besides the squared-error loss as well as the max-
margin hinge loss used in MMMF, as we do not need the
property of ‖·‖F in our proof. The theorem should still hold
if we replace ‖·‖F with ‖·‖1, ‖·‖∞, etc.

Detailed Experimental Results for Different
Missing Rates

In this experiment, we run both BPMF and GASR for 100
iterations and average all 100 samples to produce the final
result. The average RMSE and corresponding deviations on
3 randomly generated datasets are reported in Table 1.


